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ABSTRACT

Tridiagonal Markov shifts withm- lettersm =3, are defined and it is established here that tp®lbgical
Markov chain on this Markov shift is Devaney chafidevC). Further, discussing various general ideas atopdglogical
entropy for continuous maps on compact metric spaee calculate the topological entropy of the &ginal Markov

chain by the direct application of Perron-Froberheorem.
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I. INTRODUCTION

Chaos may be roughly defined as the disorderlioeseegularity witnessed in a time evolving progesalled
dynamical systems. In topological dynamical systesn$y the topological aspects are studied as aapts other aspects
like differential or measure theoretic aspects. Phiacipal focus in topological dynamics is topdkaj conjugacy, a
homeomorphism that commutes with self-maps on ceinfzgological spaces that establishes the equival®f two
dynamical models from a topological point of vielvmay be considered as a great tragedy in theystidlynamical
systems that there is no royal road to determirsslin the systems. Some methods found applicaloldraitful for a
certain class may not be useful for the other elmsBor example, sensitivity dependence on intaiditions (SDIC) has
been considered as a signature of chaos. But i systems it is not so much a pleasant businesBaw its existence
even in a simple, as it seems, dynamical procesisulation of Lyapunov exponents is another promingay paved to
tread firmly on the road to determine chaos. Furtiretheir much stated papelPériod three implies chaos’ [1], Li and
Yorke showed that the existence of period threatsdn an interval map ensures one that the mapdstic. In this case
too, determining period three points for most &f thaps is not an easy job and also this is fouadglicable in higher
dimensional models. Again, the time series analyktata does not give a complete set of infornmasibout the dynamics
of a given model. From these points of view, imade sense, the methods propounded till today redyaps be called not

self-sufficient.

The concept of entropy was first introduced in infation theory byClaude E. Shannon in his 1948 paper
entitled "A Mathematical Theory of Communication[2]. After his name this entropy in informationetbry is usually
known asShannon entropy. Later on, in a 1958 paper, the conceptefric entropy, often calledKolmogorov-Snai
entropy, was introduced by Kolmogorov which was successfigveloped by SinaModeling on this concept of metric
entropy, in 1965, Adler, Konheim and McAndrew [Bfrbduced the notion dbpological entropy for topological spaces

via covers. They projected it as an invariant giological conjugacy and since then it grew to duldeol for classifying
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20 Anandaram Burhagohain & Tarini Kumar Dutta

dynamical systems according to topological conjygatereafter, Dinaburg in 1970 and Bowen [4] in 197dependently
introduced topological entropy in metric spaceswBo fruitfully proved the equivalence between tieady existing

notion of topological entropy for topological spa@nd that defined for metric spaces.

Topological entropy is one of the simplest and nimgtortant quantities that gauge the complexita afystem. It
is viewed as a measure of exponential growth rateh® number of distinguishable orbits of iteratgsmeasure of
expansiveness. After the definition given by Boveeid Dinaburg much has been done in the field amdamacepts like

algebraic entropy has come into the scenario. Many improved metlamdsalgorithms have also been developed by this

time. An algorithm for computing( ) , the topological entropy for the self-mép using kneading theory was presented

for a continuous and unimodal m#gn [5]. In [6], we have an improved algorithm fooraputing topological entropy

using the same kneading theory. In paper [7], we lzother effective method for this computaticat tses the periodic
points of the transformation. Computability of témgical entropy is also a pertinent question in tiveory of dynamical
systems. This aspect has been dealt in a 2000 pgpéteirauch [8] and in a 2006 paper by Simonsgn3pand| [10]
calculated topological entropy &-gap shifts along with computability conditions. this paper we prove that the
tridiagonal Markov chain is Devaney chaotic anccahdte the topological entropy of this Markov chbinappropriately

using the Perron-Frobenius theorem.

Our present paper is outlined as follows. In theamping section Il, preliminary definitions are giveliscussions
on tridiagonal matrices, shift spaces and topokdgentropy are made and basic results related @setltoncepts and
needed for our purposes have been reproducedctiorséll, it has been established that the tridizg Markov chain is
Devaney chaotic. Topological entropy of this Marlahain is calculated in section IV. Conclusion af study has been

made in section V.

[I. PRELIMINARY DEFINITIONS, DISCUSSIONS AND BASIC RESULTS

2.1 Tridiagonal Matrices and Its Properties:

Band matrices [11], square matrices with non-zero entries iraadalong the diagonals, occur largely in various
applications mainly in the solution of physical plems. Such matrices arise and are extensively insbe solution to the
steady-state heat flow problem for a plate. Tridiza matrices are band matrices with band widtth&ware widely used
to estimate the unsteady conduction of heat indawdoen the temperatures at distinct points on dldechange with time.
Here the temperature vectors are fruitfully expedsby using tridiagonal matrices and the solutimthie problems has
been resolved perfectly. It is quite reasonablesxtpect that the problems related to steady heat fiod unsteady
conduction of heat may be studied more fruitfulhd aeffectively and by this some new and more irstiang results may
be propounded by using the concepts and basictsesfuMarkov shifts which correspond to the maticsed for these

purposes.

A tridiagonal matrix is a band matrix with band width 3 where the nerezentries appear only in the upper

diagonal, main diagonal and lower diagonal. A fitlder tridiagonal matrix looks like:
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a ¢ 0 0 O a8 ¢ 0
b a ¢ 0 0 b a ¢

0 b, a O | and denoted simplygs b, a, C;

0 0 b, a ¢ b, a, c,
0 0 0 b, a 0 b, a]

21

If an m™ order tridiagonal matrix is alsboeplitz, i.e. adiagonal-constant matrix, with main diagonal elements

equal toa, upper diagonal elements equalctand lower diagonal elements equalbtcthen it is generally denoted by

T.(a,b,c)and in particular ifa=b=c , then it is denoted by, (&) . Thus T (1) is clearly atransition or 0-1

Toeplitz matrix. In this paper we will mainly focus on this mateard on the Markov shift due to this matrix. Thus

11000.0 11 0
11100 111
01110.0 111
T®W=00111. 0 = 111
00011 .0 11
00000 . 1] [0 L1

More formally T, (1) = B(say) =[B;

i | mxm 1S the mattrix whose entries are given by

B, =1 for i—jj<1 and B; =0 for |i-j|=2

We note here that the first and last columns (evsjoof this matrix contain exactly two 1's and evether

column (or row) contains exactly three 1's. Theldwing results are important in the implementatiamfsvarious
dynamical properties of the topological Markov chan the Markov shift due to the matfi (1) = B. Before any further

discussion we first recall the definition of irremtoility and aperiodicity of matrices.
Definition2.1.1: Irreducible and aperiodic matrices. A square matri>A=[Aj]mxm is irreducible if for
everyi, JON,1<i,j<m, CnON such that Al >0i.e. the (i, j)"entry of the matrix A"is positive. Ais

aperiodic if for everyi, N, 1<i, j<m,CnN such thatA:'< > 0,0k = n. From these definitions it is clear that

an aperiodic matrix isalways irreducible.

Proposition: 2.1.1[12, 13]The eigenvalues of T, (a,b, C) are given by

A= a—Zﬁco{ﬂj, k=123....m

m+1
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2.2 Shifts, Shifts of Finite Type, Graphs, Vertex Shiftsand Tridiagonal Markov Shift (TDMS)

For a finite setA of m elements, théull A-shift [14], denoted b)AZ, is the set of all the bi-infinite sequences
X :{Xi};i-w of elements fromA. We refer toA as thealphabet and its elements agmbols or letters. Any finite sequence
of k-letters from the alphabe is aword or ablock of length k over A or simply ak-block. For analytical purposes the

sequence X={x}"_.in  A’is typically denoted  by....X_3X_,X 4 XXX Xg....... The  block

Koo X g X o XXXy X X in X, usually denoted by _ ;. is the central (2k+1)-block of x. A%is a compact

topological space in the product topology [15] Inava basis consisting oflinders C—k,l (a_k, ..... 3 ) defined by
Co (@) ={x=(x)2, OA”: x =a,0i with-k<i<l}

The mapo: A - A’ defined by (X) =.... X 3X ;X1 Xy (X X,Xs.....is the shift map on the full shiftA”.
The shift magg on the full A-shift is continuous and is a homeomorphism Af [15]. Forp >1, the metric

d,: A®xA” - R defined by

d, (% y) =d, (%), (V)2) = 7, where k =min{fi|:x # v}

Generates the product topology Af [15]. Consequentl)(,Az,U) is a topological dynamical system which is

Devaney as well asAuslender-Yorke chaotic.Further,g haschaotic and also hamodified weakly chaotic dependence on

initial conditions [16].

00

It is to be noted that jp>2m-—1, then for any £ =1/ p"anda={a}"_ A, the cylinder

i=—c0

C.in(@

—n1e"

.,a,), called a symmetric cylinder, is nothing but the open bade (a, &) which contains all the bi-infinite

sequences havingl_n’n] as their central2n+1)-block [17].

Shift spaces X, also callecsubshifts, are subsets of the full-shift AZ such that no block from a specific $ebf
some certain blocks appears in any sequencé hiere the seF in this context is termed dke collection of forbidden
blocks. The shift space with the forbidden collectieris generally denoted b¥:. If the collectionF of forbidden blocks
of a shift space is finite, then itis ashift of finite type or aMarkov shift. Markov shifts can be described tyansition
matrices or by associatedirected graphs of these transition matrices. The connection betwgansition matrices and
directed graphs is well known. These two conceatshe linked to Markov shifts. More precisely, angition matrix or its
associated directed graph give rise to a Markoft sitich is known as a vertex shift correspondingthe transition

matrix. The actual process of forming these Marglifts is as follows:

For a transition matriA = (A) the vertex shift or Markov shift determined Ays denoted by)A(A or 2,

mxm?

and is defined by

>, ={x=(x)2, OA%: A, =10i027

Impact Factor (JCC): 2.6305 NAAS Rajr8.45



Devaney Chaos and Entropy of the Tridiagonal MarkovChain 23

m
It is a 1step Markov shift [5] with (mz_ZAij numbers of forbidden 2-blocks given by the

ij=1
collectionF ={ij :1<i,j<m, A, =0} . Admissble cylinders in the Markov shift of the type
Ci(@yyes@) with K, I ON satisfyingA,, =10 —k<i<l, andadmissible symmetric cylinders of the type
C—k,k (a_k, ..... ,ak) play a pivotal role in the discourses of the dyr@hproperties of theopological Markov chaing, ,

restriction to the shift mag@ on the Markov shift ,. We have the following important proposition whishfrequently

taken into account in the studies related to tagiokd Markov chains.

Proposition: 2.2.1 If 0,:2, — Z,is a topological Markov chain corresponding to the transition matrix A,

then,
(i) Aisirreducibleif and onlyif 0, :2, — 2 ,istopologically transitive.
(i) If Aisaperiodic, then 0, : 2, — Z ,istopologically mixing.
The Markov shift determined by the tridiagonal Titep matrix T, (1) =T(say)is given

byZ; = Xy ={x=(x)", DA?: x OA={123...,n}, i0Z[% -,

i=—oc0

<1}. Its forbidden class

isF ={ij :1<i,j<m, 2S|i - j| <m-1} . That s, a bi-infinite sequendgX, );=_., J Z,, will be a member ok , if
X ,, follows X only when their difference is 0 or 1.

2.3: Topological Entropy

Topological entropy of maps has been defined ifouar equivalent ways. Here, we will mainly deal hwthe

definitions which are connected to the definitiaiseparated sets, spanning sets and to that of apers. To deal with

these entropies we need the concept of a very apégbe of metric dnf for a topological dynamical system

(X, f)defined by
dl (x,y) = gjka){d(f "(x), f"(y))} Whered is the underlying metric fox.

The open baB,, (x,&) ={yOX:d, (x,y) <&} ={yOX:d(f“(x), f“(y)) <&, 00<sk<n} with

radius £ > 0 and centrex consists of all the points X whose orbits up to tima stay & —close to the orbit segment

OF ={x, f(x), F2(X), F3(X),.... T (%)} .

It is easy to see that

B, (x,€) = By (x,£) N (B, (T (x), )N f (B, (f*(x), ) N...0 F (B, (" (x),))
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2.3.1Separated Sets and Topological Entropy

Let (X, f) be a topological dynamical system with underlyingtric d. For £ >0 andn[ON, asetS X is
an (n,£) — separated set if for every pair of distinct pokity ]S, we have thad ' (X, y) = £. That is, with a finite
scale resolutios , every pair of points in afn, £) — separated set have trajectories which can be rezayas different

in time n. Since(X,d) is compact, so it follows that there exififs£) — separated sets and every such set is finite and

bounded above uniformly.Sep(f,n, &) denotes the maximal cardinality of @m &) —separated set. Now, for

. 1
anye >0, the quantityh, (f,€) =lim sup=log Sep(f,n, &) gives the exponential growth rate S#(f,n,£).
n

n- o

Then the topological entropy h, (f) of a given dynamical system (X, f)is defined

o 1
by, (f) = IIrT(1) limsup=log Sep(f,n, &) . Thus h,, (f,&)is the exponential growth rate of maximum number of
£ n-oo n

orbits of lengthn which are distinguishable with finite precisiémand hop(f) is the exponential growth rate of maximum

number of orbits of length which are distinguishable with finite but arbitygrecisiore .
2.3.2:Spanning Sets and Topological Entropy

For €>0 andnN, a set SO Xis (Nn,&)—spanning if for everx[] X there is y[JSsuch
thatd | (X, y) < £. It follows that a seS [ X is (n, &) — spanning if for the finite resolutiah> 0, any point inX can
be approximated with a point i8 whose orbit up ton unit of time is indistinguishable. Equivalenths [0 X is

(n,&) —spanning if and only if X=UBdf(y,£). Span (f,n, &) denotes the minimal cardinality of
s

a(n, &) — spanning set iXX. Just like considering exponential growth rateS#p (f , N, £) for finite precision& > 0and

then taking limit ag — O, we can define topological entropy in an altemeativay. Though it seems different, it turns out
that the consequence of both of these concepts diee same topological entropy. In this sense boghconsidered as

equivalent definitions. The following theorem edisties this fact in a more accurate and precise way

Theorem: 2.3.1[8]:For atopological dynamical system f : X — X on the metric space (X, d),

he, (f) = Iinglim sup%logSpan(f N, &)

Proof: The proof of this theorem is based on the follayiwo results
() Span (f,n,&) < Sep(f,n, &) and (i) Sep (f ,n,28) < Span(f ,n, &)

Let us prove these results one after another. Sgme an(n, &) — separated set of maximal cardinality so
thatSep(f,n,&) =Card(S). We claim that S is also (&, &) — spanning set. For givenll X —S, consider the

setSU{X} . Now, S being a maxima(n, &) — separated seBJ{ X} cannot be ar(n, £) — separated set. So, there must
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exists a pointy [J Ssuch thatl' (X, y) < &£. Otherwise, ifd. (X, y) = & for somey 0 S, then SU{ X} will become an
(n, &) — separated set. Thus for any givehl X — S, there always exists a poiyit ] S which is £ — closeto x w. r. t.
thed, —metric as well as thel —metric. This amounts to conclude here tigis (N,&) — spanning. Since the

cardinality of any minima{n, £) — spanning seb cannot exceed the cardinality of any otlfe; £) — spanning set, so we

immediately have that
Soan(f,n, &) <Card(S) =Sep (f,n,¢)
To prove (i), let us consider a minin(d, £) — spanning se8 so thatSpan (f ,n, &) = Card(S) . Since,S

is (N, £) — spanning, so we have th¥t = U By, (Y, €) . Again consider thaS be a maximal(n,2€) — separated set so
yvOS

thatCard(é):Sep(f,n,Zg). Now, we show that nd, —ball mentioned above can contain two distinct

pointsS,tDé. n separated set. If possible, let the two distipoints S,tDé are contained in a single

d, —ball B, (V&) for somey L1 S. Then, from triangular inequality, we have,

di(st)<d! (s y)+d(y,t)<e+£=2c,a contradiction to our assumption that Sis

(n,2¢) — separated. Then, it immediately follows that thedirelity of é cannot be more than the number of open balls

which is equal to the cardinality 8f So, we have,
Sep (f ,n,2¢) = Card(S) < Card(S) = Span(f ,n, £)

i.e, Sep (f ,n,2¢) < Span(f,n, &)

Proof of the theorem By the above two results (i) and (ii), we clednbve that
Sep (f,n,26) < Span(f,n, &) < Sep(f,n, &)

Now, for anyn 1N , we also have that

lim sup%[Sep (f .n,26)] < lim sup%[Span(f,n, £)] < lim sup%[Sep(f n.8)]

n- oo n- o n- o

Taking limit as€ — 0, it amounts that the left as well as the rightchaitie of the above relation converge, by

definition ofh,,, () , to h,, (f) and hence ultimately we have that

he, () = Iinglim sup%log Soan(f,n,€)

2.3.3: Topological Entropy via Covers

Consider a topological dynamical syst€¥, f)on the compact metric spack, d). Then,X being compact
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every open cover of is reducible to a finite sub cover. So, it is gt to consider only the finite coversXfFor given

nNONand &£>0, we consider a particular class of open covers % Consider a class

C: ={B,, (x,£/2): xS where Sis (n,&£/2) —spanning} . Thus for every(n,&/2) —spanning set S, we
have a finite collection Iiké:,;€ of open balls with centers at every point of tharming sef and dnf — diameter less than

£ > 0. By definition of a spanning s& we have,U Bdn (X,6/2) =X and soC;'s are finite open covers oK
xads

with open sets havingl! — diameter less thani> 0. Cov (f,n, &) denotes the cardinality of a minimal finite open

cover of X containing open sets each of which h# — diameter less thar€ > 0. Then we have the following

important theorem which leads us to define topaalgéntropy in another alternative way:

Theorem: 2.3.1:For any topological dynamical system f : X — X on the metric space (X, d),

ey () = lim lim sup™ logCov (f ,n, &)
L Nn-oo n

The proof of this theorem is an immediate consegei@fi the following Lemma:

Lemma: 2.3.1:For any topological dynamical system f : X — X onthe metric space (X, d),

Soan(f,n,&) < Cov(f,n,&) < Span (f,n,e/2)

Proof of the Lemma To prove the first inequality, we first claim th& C is any cover oK containing open sets
having dnf — diameter less thafi> 0, then each open setof this cover is contained in an open bBI(!nf (X, é’) centered
at a poinXLJU . For, U being an open set Wi'tfinf — diameter less thag > 0andx U , for everyy [1U , we have

thatd ! (X, y) < £. So, it immediately follows thay (] Bdnf (%, &) and hencdJ [ BOlnf (X, &) which is our claim. Then

clearly {B, (x,£):x0U,UUC} is an open cover ofX with d —balls having radius £>0 and

cardinalityCard(C) . Then the se$ of all the centres of this new cover will defitytéorm an (N, £) — spanning set ok
with cardinalityCard(S) = Card(C). Suppose we initially have chosed to be a minimal open cover such
thatCov(f,n,&) =Card(C). Then the correspondinfn, £) — spanning se§ of X obtained by the above process is

such thaCov(f,n, &) = Card(S). In this case by definition d&an (f,n, &), we have that
Soan (f,n,&) < Card(S) =Cov (f,n, &) (A)

To prove the second inequality, Bbe an (N,& /2) —spanning set ak. Then it gives a cover of open ballsXf
with d, —diameter less thag > Oand with cardinalityCard(9). If S is a minimal (n,& /2) —spanning set oK, then
San (f ,n,e/2) =Card(S). Suppose C is the open cové& ={B, (X,E/Z): X[ S} corresponding to this

(n,e/2)—spanning set S of X, then the minimal cardinality cannot exceed the
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cardinalityCard(S) = Span (f ,n,&/2) and so we have
Cov(f,n,&)< San(f ,n,e/2) (B)
Combining (A) and (B), we gé&pan (f,n,&) < Cov(f,n,&) < San (f ,n,e/2).
Proof of the theorem By the above Lemma, we have that
Soan(f,n,&) < Cov(f,n,&) < Span (f,n,e/2)

So, for eaclg >0,

lim sup%log Soan(f,n,&) <lim sup%logCov(f ,NE)<lim sup%log Soan (f ,n,e/2)

n- oo n-oo n- oo

i.e. im sup%log Span (f,n, &) <lim %IogCov(f ,NE)<lim sup%log Soan (f ,n,e/2)

n- oo Nn-co

For arbitrarily small precisiog > 0, taking limit as£ — O, the left as well as the right hand limits tends t

he, (f) and hence by sandwich theorem we ultimately haae th

ey (F) = lim lim sup™ logCov (1 )
£ n- oo I’]

Example: 2. 3.1: Consider the well known doubling mag :R/Z — R/Z which is defined

by f (X) =2x(modl) . For n[IN and0 < £ < 1/4, we first construct(n, £) — separated and spanning setXof
For,0< £ <1/4, we can find ak O N such thatl/2“"* < & <1/2%. Here, from our assumptiof < & <1/4 we

i .
clearly have thd =2. Consider the sé&, ={§ 0<i<2" —1}, i.e. the set of alldyadic fractions with

denominato” . We now show thd, ,,_, is an (N, £) — separated set.

Let X,yUS,,, ., X# Y, be arbitrary. We know that for the doubling mbfx) = 2x(modl), and for any
r,sOR/Zwithd(r,s)<1/4, d(f(r),f(s))=2d(r,s). So, if there exists 0<|<n-1 such that

d(f'(x), f'(y) 21/4we are done. @(f'(X),f'(y))<1/4, then we repeatedly apply the rule
d(f(r), f(s)) =2d(r,s) for (n—1) —times and ultimately will get

d(f™(x), () =2""d(xy)
since X, YOS, , ., X# Y, we haved (X, y) = 1/2"*"and

d(f™(x), f"H(y) =27 d(x, y) 22" /2" =1/2" > ¢
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This shows thafS,,, is an (N, £) — separated set.
Next we show thaS,,, is an (N, €) — spanning set oX.

i+l

Let X[J[O1) be arbitrary. Then there exists a dyadic intervhl={w,w},0£i < 2™ such

i+1
or then we ged(X, y) < andforO<l <n-1,

thatX L] 1, . Now, if we takey = W

2n+k

2n+k
d(x,y)s1/2™ = d(f'(x), f'(y) < 2 /2™ < 2" 2" =1/2" < ¢
Hence S, is an (N, €) — spanning set oX.

Finally we compute the topological entropy of theulling map using the@, &) —spanning set and

(n, &) — separated set.
By definition of Span (f,n, &) andSep (,n, &), we have,
San (f,n, &) <Card(S,,,) and Sep(f,n,&) = Card(S,,,,)
So, we have,

he, (f) = Iirr(1) lim supllog Soan(f,n,¢) < Iirrtl) lim supllogCard(Smk) = Iirrtl) lim supllog 2™ =log2A
£ n £ n £

n— oo Nn- oo n- oo n

nd

hep (F) = |in’(l) lim sup%logSep(f N, €)= IirrgJ lim sup%logCard(Smk_l) = |in’(l) lim supllog 2™t =]og2

n- oo nooo n-o N

Now, h, (f)<log2h, (f)=log2=h,(f)=log2. =

2.4: Topological Entropy of Shiftsand of Markov Chains

Entropy in a dynamical system measures the dynamicaplexity of the mapping that defines the systéor a
shift, it not only measures the complexity of thftsspace, but also measures its information cépathe entropy of a
shift space is a number which is invariant underjugacy and behaves well under factor codes andupts. Perron-
Frobenius theory of nonnegative matrices is a very useful tool Egpto compute the entropies iofeducible shifts of
finite type and of sofic shifts. In [14], we haveethods for decomposing a general shift of finitpetynto irreducible
pieces and for computing the entropy of those shiith the help of these irreducible parts. Below farmally give the

definition of entropy of a shift space prior to dnyther discussion on entropy of a shift of finiype.

Definition: 2.4.1:Entropy of a shift: Let X be a shift space. The entropy of the shift spagedenoted byn(X)
and is defined by

h(X)=|nirg%|og|Bn(X)|
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WhereB, (X) denotes the set of all the —blocks appearing in the points X. From this definition it is clear

that the entropy of a shift is nothing but the giowate of N —blocks in X. The calculation of entropy of a shift is
important because it directly gives the topologiatropy of its corresponding shift map. The follogvproposition gives

the exact relation between these two entropies:
Proposition [14, 17]: 2.4.1For a shift dynamical system(X, 0y ), h(X) =h, (oy).

This proposition can be fruitfully applied to fittkde topological entropy of a Markov chain. For tadculation of entropy

of a shift space, the following two theorems areergively used. Precise proofs of these theoremaailable in [14].

Theorem: 2.4.1[14]: Perron-Frobenius Theorem|: For an irreducible matrix A# O, A has a positive
eigenvector V, with corresponding eigenvalue A > Othat is both algebraically and geometrically simple. If 4/ is another

eigenvalue for A, then|,u| < /]A. Any positive eigenvector for Aisa positive multiple of V,.
T heorem 2.4.2[14]: (i)If G isan irreducible graph, then h (Xg) =Iog/1A(G).

(i) If X be an irreducible M-step shift of finite type and G is the essential graph for which XMl = X, then

h(X)=log A -

Now we are in a position to establish the followingportant results.

Ill. DEVANEY CHAOS OF THE TRIDIAGONAL MARKOQOV SHIFTS

Theorem: 3.1: T, (1) = Bisirreducible aswell as aperiodic.

Proof: We first prove thdB?, is a band matrix of band width 5. For this we chée show that along with the central 3-
diagonals oB?, the diagonals above and below these also comaimsero entries. More explicitly we need to shbuat

B, #0,01<i,jsmuwith|i-j|<2
HereT (1) = B being a tridiagonal Toeplitz matrix, by definitiome have,

BIj =1#£0,001<i, j £ mwith |i - j| <1 and BIj = 0 otherwise.
=1

m-1
2 — — — -
Bl = zl B,.B,sy 2 BBy =11=1>0, 0i = 123,....m-1

J
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m-2

2 — —
Bl = z B2 = B yBayspy =11=1>0, 0i = 123,....m-2

=

m-2
2 — — — H—
Bi. = zl By -Bji 2 Bpagyan By =11=1>0, i = 123,.....,m-2
J:

Further, we have,
m
2 —_ H—
Bl = Z i4101Bi = BBy + BayzBs - F BiaomBn =0, 0i =12,...,m-2and k>3

and B|2(i+k) = z B;-Bi(+ = BiBiiwgy T B2Byiag -t BrBrgy =0, Ui =12,....m-2and k=3
=

From the above facts it follows thd®is a pentadiagonal matrix or a band matrix of basdth 5. That iB?

will have two more non-zero diagonals tHan In a similar way we can show th&* 1< k < m— 2,is a band matrix of
band widthi2k + 1. Particularly, B™is a positive matrix. Thus every tridiagonal Togpnatrix T.,(D) = Bis aperiodic

and hence is irreducibla.

Theorem: 3.2: The tridiagonal Markov chain 0 1 25 — 2 istopologically transitive and mixing.

Proof: By proposition 2.2.1, we have that for angiion matrixA, T (D) = Bis topologically transitive if and
only if A is irreducible. Since every entry iﬁ“(l) =B is either 0 or 1, so it is a transition matrixsé) by the above
theorem, T (1) = B is irreducible. Therefore, we immediately havet ttiee corresponding topological Markov chain
Oy .25 — 2gis topologically transitive.

Also, by the same proposition we have thaB ifs aperiodic, then the corresponding topologicalrikév chain
Og .2y — Zgis topologically mixing. Since by the above theorély (1) = Bis aperiodic, so0y 12, — Zgis

topologically mixing.m

Theorem: 3.3:The set of all the periodic pointsof o, : ¥, — X isdenseinX,;.
Proof: Consider an arbitrary poit= (X );z_o, = ..eeeX_geeees X_gX o X g KX XoXgumeen X 0Z;.

Then, for any gives >0, however small, we show that there is a periodaintp p[JP(o;) such

thatd, (X, p) < £. That is, whatever smail > 0 may be, thes — neighbourhood of always contains a point &(0) -

For fixede >0andp >1, it is easy to find a positive integenIN such thajp™ <&. Now, for the
pointx = (X );~_, 0 X, we find out a periodic poirp [ P(0}) in thes -neighbourhood ok. First we closely observe
the pointx = (X;);- We know thak = (%)=, 024 when and only

| =—00
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whenx, = x,,|=00r 1,0i0Z and x°0{1,23,...,m} . That is, the difference between any two conseegymbols

in a point inZ , is either 0 or 1. Now, consider the cenf@h + 1) —block x_ . of the pointx = (x);._, 0 Z and the

letters x_, andx, . Then, there may arise two cases. Case IXLgt X, . In this case we can construct the periodic

point p by concatenating the fixed blocjﬁ_ infinite number of times in both directions. Since,, = X, it is always

n,n]
allowed. Also, since the centf@n + 1) —blocks ofx andp agree, sdp (X, p) < p " <& Thatis, in this case we can

easily find out a point in the — neighbourhood ox.

Case II: Letx_, # X,,. Then there may arise two sub cases; > X, 0rx_, < X, .

Ifx_, >X,, then we consider the worav=X_, a,2,8;..8,X_, where x aa,a;...a,X_,is a word of
consecutive digits i\ = {1,23,...,m} . Then by concatenating the fixed wowd infinite number of times in both
directions we get a periodic poipin the £ — neighbourhood of.

If X_, < X,,then take the woraV' = x_, . b,b,b,.. b, X_ where X bb,b,.. b, X_ is a word of consecutive digits
in  A={123,...,.m}in descending order. In this case also by concttepa the fixed word
W' = X, 00,05 b, X infinite number of times in both directions we geperiodic poinp in the & — neighbourhood
of x.

Thus in all cases we always have a periodic pgril P(0;) in the £ — neighbourhood. So, it follows that
P(og)isdense iz . m

Theorem: 3.4: The shift map o, : 2, — 2 has sensitive dependence on initial conditions with the sensitivity
constantd =1.

Proof: For arbitrarily choseng > 0andX = ()ﬁ);z:, DZB, we show that there always exists a point

[ee]

Y=(¥,)i-, Z5in the &-neighbourhood ofk such thak,,, # V,.,for someK[JN. LetN,(X) denotes the&-

neighbourhood ok. Then, for fixedo > 2m—1, there existsN[IN such thatp ™" < £ < ,Ol_nand so clearly we have

thatC_ (X

—n?t*

X)) = de x,p"0O de (X,&) = N,(X). Now there may arise two cases: Case/:= X,,, and

Case ll: X, # X, -

In the first case we choosg ]2 5 in such a way that

[ee]

Y= (Y = X ) Korg XXz WHEFE X =% £1X =X, 0i(22) ON

i=c0

Now, X = (%)=, 0% = X0, 1y Xom: x{m’m] = X2 U B(Zg), the language oF g
=Y = (¥t = Xewo1) Koy X;+1X{*n+2,°°] P2
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Here x andy agree at least in thei(2n +1) central blocks. So, clearlyd,(X,y)< 0™ <& and hence

yOB,, (%07") =C /(X greeiXy) O By, (X,€) =N(X).

In the second case, we chodsklZg in such a way thay = (V;)iZ_o, = X_w g Dﬁoyn]X;ﬂX[*mzym], where

=2, 0=2.

X:1+1 = xn and X:1+i = Xn+i for ‘Xn _Xn+2 S:I'and X:1+i = Xn+i il for‘xn _Xn+2

In both casedn (X) = ... X_eee Xgee K 11X oy, O () = X o1 %0, D(;+l){n+2,m]’ X, EX

=05 (N£0g(y) [+ (057 (¥), % (T5 " (¥))o]

=d, (057 (9,057 (¥)) == 9)

Thus there existd(=1) such that for anX = (X );-_., JZzand any neighbourhoodN (X) of x, there exists
Y= (¥ ON(X) andk(=n+1) ON withd, (05 (X),05(y)) =1(=9).

Henceo, : %2, - Z, has sensitive dependence on initial conditians.

Theorem: 3.5: Thetridiagonal Markov chaing, : 2, — Z isDevaney chaotic.

Proof: This is an immediate consequence of theréms 3.2, 3.3 and 3.4.
IV. TOPOLOGICAL ENTROPY OF TRIDIAGONAL MARKOV CHAIN S

To calculate the topological entropy of a Markovftsthat corresponds to a transition matrix regsitbe

eigenvalue of greatest modulus of that matrix.

By Proposition: 2.1.1, the eigenvalueskf(a,b, C) are given by

A= a—Zﬁco{ﬂj, k=123....m

m+1
So, immediately we have that the eigenvalue$ ofLL1) =T (1) are given by

A :1—2co{ﬂj, k=123....m
m+1

Again by Proposition: 2.4.1, fa shift dynamical systefX, 0y ) , h(X) =h,, (oy).

Now, we calculate the topological entropydf,where B =T_ (1) for m= 34 and then finally generalize it.
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4.2.1:Calculation of Topological Entropy for Z;Where B =T, (1)

110
Considerthe matrtB=T,(1) =|1 1 1
011
1-14 1 0
1-1 1 1 1 5
HereB=Al,|=| 1  1-4 1 |=(@1-4) - =@1-1)°-21-2)
1 1-A |0 1-4
0 1 1-4

Now,
B-Al=0= - )[A-1)?-2] = @- )N -24-1) =0
= A=11+J21-/2=1- 2co{k7”}, k=123

= Anax =1+42=1- 200{37”}

Therefore, by Perron-Frobenius theorem,
h(Z5) = hep (T5) =109, =log(L++/2) = log[L- 2cod377/4)] .

4.2.2:Calculation of Topological Entropy for > WhereB =T, (1)

1100

1110
Consider the matrix tridiagonal Toeplitz mati =T, (1) =

0111

0 011

L 1 0 -2 1 0 1 1 0
B-Al,|= =@-ANf1 1-2 1 (-1 1-A4 1
0o 1 1
0 1 1-A [0 1 1-2

= (@L-A).0- )R -24 -1) - [1- )2 -1]
= L= A)2(R =24 -1) - (1- )2 +1

(R -20)2 - (N -2))-1

= -u-1, where u=A-2J

Now,
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12— u=-1=0= p= 1 -2 :%:2/]2—4/1—(11\/3):0
2

= =1¢%(\/§¢1) =1—2co{%”j,k = 1234

Therefore, A, =1+%(\/§ +1)=1+ 2%(\/5 +1): 1+ 2cog g} =1- 200{4?”}

and henceh(Z,) = hmp(UB) =109 Ao = Iog{l— 2C0{4?ﬂ} . u

4.2.3:Topological Entropy for £; WhereB =T, (1)

Here
112 000 0] 11 0]
11100 0 111
01110 0 111

T®M=/0 0 1 11 0 = 111
00011 0 11
e e 1 L1
00000 . 1 [0 w1

We have already mentioned that the eigenvalu&®fT (1) are given by

A :1—200{£j, k=123,....m
m+1
We show that A, =1—2co0 T —1-cog m-—" | =1+cog—~
m+1 m+1 m+1
n 2n 3n 4n mi
We have,0 < < < < <. < <JIT
m+1 m+1 m+1 m+1 m+1

V4 21T 3T miT
= CO0 >Co >Co > >Co
m+1 m+1 m+1 m+1
V4 217 3T miT
=1-2co <l-2co <l-2co <...<1l-2co
m+1 m+1 m+1 m+1
Avax =1—2cC0 T 1 cod r-—" |=1+cos "~
m+1 m+1 m+1
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Hence we can conclude tha(Z 5) = h,, (0) =109 A, = |Og{1+ ZCO{—Z].H ..
m

V. CONCLUSIONS

In this paper we have mainly introduced tridiagoshifts corresponding to the tridiagonal Toeplitansition
matrices which normally arise in the study of stehdat flow problems in a plate and also in unsteamhduction of heat
on a rod. Detailed discussion on shifts and onopies has been given in the preliminary discussgmstion. In the result
part, we have examined the dynamical aspects dffdémov chain on the tridiagonal Markov shift irettheorems 3.1 to
3.5 where we have finally established that theiggdnal Markov chain iDevaney chaotic. In section IV, we have

calculated topological entropies for the Markovtshivith 3 and 4 letters and finally generalizeébitm letters and found
. . T I .
that the topological entropy |§Og{l+ 2C0{—1ﬂ - log3asm — . The positivity of topological entropy
m+

ensures the chaotic nature of the tridiagonal Maddtains. It is rationalize to expect that steadgthiflow problems and
also the problems related to unsteady conductioheat on a rod can be more analytically and frlitfinterpreted,
studied and resolved with these added conceptsesntis. Further it is expected that new but morpkfied results/ideas

will definitely come up and thereby open new dimens in the study of thermal physics.
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