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ABSTRACT  

Tridiagonal Markov shifts with m- letters, 3≥m , are defined and it is established here that the topological 

Markov chain on this Markov shift is Devaney chaotic(DevC). Further, discussing various general ideas about topological 

entropy for continuous maps on compact metric spaces we calculate the topological entropy of the tridiagonal Markov 

chain by the direct application of Perron-Frobenius theorem.  

KEYWORDS : Markov shifts, Topological Markov chain, Topological Transitivity, SDIC, Devaney Chaos, Topological 
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I. INTRODUCTION 

Chaos may be roughly defined as the disorderliness or irregularity witnessed in a time evolving process, called 

dynamical systems. In topological dynamical systems, only the topological aspects are studied as opposed to other aspects 

like differential or measure theoretic aspects. The principal focus in topological dynamics is topological conjugacy, a 

homeomorphism that commutes with self-maps on compact topological spaces that establishes the equivalence of two 

dynamical models from a topological point of view. It may be considered as a great tragedy in the study of dynamical 

systems that there is no royal road to determine chaos in the systems. Some methods found applicable and fruitful for a 

certain class may not be useful for the other classes. For example, sensitivity dependence on initial conditions (SDIC) has 

been considered as a signature of chaos. But in some systems it is not so much a pleasant business to show its existence 

even in a simple, as it seems, dynamical process. Calculation of Lyapunov exponents is another prominent way paved to 

tread firmly on the road to determine chaos. Further, in their much stated paper “Period three implies chaos” [1], Li and 

Yorke showed that the existence of period three points in an interval map ensures one that the map is chaotic. In this case 

too, determining period three points for most of the maps is not an easy job and also this is found inapplicable in higher 

dimensional models. Again, the time series analysis of data does not give a complete set of information about the dynamics 

of a given model. From these points of view, in a crude sense, the methods propounded till today may perhaps be called not 

self-sufficient.  

The concept of entropy was first introduced in information theory by Claude E. Shannon in his 1948 paper 

entitled "A Mathematical Theory of Communication"[2]. After his name this entropy in information theory is usually 

known as Shannon entropy. Later on, in a 1958 paper, the concept of metric entropy, often called Kolmogorov-Sinai 

entropy, was introduced by Kolmogorov which was successfully developed by Sinai. Modeling on this concept of metric 

entropy, in 1965, Adler, Konheim and McAndrew [3] introduced the notion of topological entropy for topological spaces 

via covers. They projected it as an invariant of topological conjugacy and since then it grew to a useful tool for classifying 
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dynamical systems according to topological conjugacy. Hereafter, Dinaburg in 1970 and Bowen [4] in 1971 independently 

introduced topological entropy in metric spaces. Bowen fruitfully proved the equivalence between the already existing 

notion of topological entropy for topological spaces and that defined for metric spaces. 

Topological entropy is one of the simplest and most important quantities that gauge the complexity of a system. It 

is viewed as a measure of exponential growth rate of the number of distinguishable orbits of iterates or measure of 

expansiveness. After the definition given by Bowen and Dinaburg much has been done in the field and new concepts like 

algebraic entropy has come into the scenario. Many improved methods and algorithms have also been developed by this 

time. An algorithm for computing )( fh , the topological entropy for the self-mapf , using kneading theory was presented 

for a continuous and unimodal mapf in [5]. In [6], we have an improved algorithm for computing topological entropy 

using the same kneading theory. In paper [7], we have another effective method for this computation that uses the periodic 

points of the transformation. Computability of topological entropy is also a pertinent question in the theory of dynamical 

systems. This aspect has been dealt in a 2000 paper by Weirauch [8] and in a 2006 paper by Simonsen [9]. Spandl [10] 

calculated topological entropy of S-gap shifts along with computability conditions. In this paper we prove that the 

tridiagonal Markov chain is Devaney chaotic and calculate the topological entropy of this Markov chain by appropriately 

using the Perron-Frobenius theorem.  

Our present paper is outlined as follows. In the upcoming section II, preliminary definitions are given, discussions 

on tridiagonal matrices, shift spaces and topological entropy are made and basic results related to these concepts and 

needed for our purposes have been reproduced. In section III, it has been established that the tridiagonal Markov chain is 

Devaney chaotic. Topological entropy of this Markov chain is calculated in section IV. Conclusion of our study has been 

made in section V.  

II. PRELIMINARY DEFINITIONS, DISCUSSIONS AND BASIC RESULTS 

2.1 Tridiagonal Matrices and Its Properties: 

Band matrices [11], square matrices with non-zero entries in a band along the diagonals, occur largely in various 

applications mainly in the solution of physical problems. Such matrices arise and are extensively used in the solution to the 

steady-state heat flow problem for a plate. Tridiagonal matrices are band matrices with band width 3 which are widely used 

to estimate the unsteady conduction of heat in a rod when the temperatures at distinct points on the rod change with time. 

Here the temperature vectors are fruitfully expressed by using tridiagonal matrices and the solution to the problems has 

been resolved perfectly. It is quite reasonable to expect that the problems related to steady heat flow and unsteady 

conduction of heat may be studied more fruitfully and effectively and by this some new and more interesting results may 

be propounded by using the concepts and basic results of Markov shifts which correspond to the matrices used for these 

purposes. 

A tridiagonal matrix is a band matrix with band width 3 where the non-zero entries appear only in the upper 

diagonal, main diagonal and lower diagonal. A fifth order tridiagonal matrix looks like: 
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If an thm order tridiagonal matrix is also Toeplitz, i.e. a diagonal-constant matrix, with main diagonal elements 

equal to a, upper diagonal elements equal to c and lower diagonal elements equal to b, then it is generally denoted by 

),,( cbaTm and in particular if cba ==  , then it is denoted by )(aTm . Thus )1(mT is clearly a transition or 0-1 

Toeplitz matrix. In this paper we will mainly focus on this matrix and on the Markov shift due to this matrix. Thus  
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More formally mmijm BsayBT ×== ][)()1( is the matrix whose entries are given by  

2011 ≥−=≤−= jiforBandjiforB ijij   

We note here that the first and last columns (or rows) of this matrix contain exactly two 1’s and every other 

column (or row) contains exactly three 1’s. The following results are important in the implementations of various 

dynamical properties of the topological Markov chain on the Markov shift due to the matrix BTm =)1( . Before any further 

discussion we first recall the definition of irreducibility and aperiodicity of matrices. 

Definition2.1.1: Irreducible and aperiodic matrices: A square matrix mmijAA ×= ][  is irreducible if for 

every mjiji ≤≤Ν∈ ,1,, , Ν∈∃n  such that 0>n
ijA i.e. the thji ),( entry of the matrix nA is positive. A is 

aperiodic if for every mjiji ≤≤Ν∈ ,1,, , Ν∈∃n such that nkAk
ij ≥∀> ,0 . From these definitions it is clear that 

an aperiodic matrix is always irreducible. 

Proposition: 2.1.1[12, 13]: The eigenvalues of ),,( cbaTm are given by  
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2.2 Shifts, Shifts of Finite Type, Graphs, Vertex Shifts and Tridiagonal Markov Shift (TDMS) 

For a finite set A of m elements, the full A-shift [14], denoted by ΖA , is the set of all the bi-infinite sequences 

∞
−∞== iixx }{ of elements from A. We refer to A as the alphabet and its elements as symbols or letters. Any finite sequence 

of k-letters from the alphabet A is a word or a block of length k over A or simply a k-block. For analytical purposes the 

sequence ∞
−∞== iixx }{ in ΖA is typically denoted by .............. 3210123 xxxxxxx ⋅−−− . The block 

kk xxxxxxxx ........ 210123 −−−− in x, usually denoted by ],[ kkx − , is the central (2k+1)-block of x. ΖA is a compact 

topological space in the product topology [15] having a basis consisting of cylinders ),.....,(, lklk aaC −− defined by 

},:)({),.....,(, likwithiaxAxxaaC iiiilklk ≤≤−∀=∈== Ζ∞
−∞=−−  

The map ΖΖ → AA:σ  defined by ..........)( 3210123 xxxxxxxx ⋅= −−−σ is the shift map on the full shift ΖA . 

The shift mapσ  on the full A-shift is continuous and is a homeomorphism of ΖA  [15]. For 1>ρ , the metric 

RAAd →× ΖΖ:ρ  defined by  

}:min{,))(,)((),( ii
k

ii yxikwhereyxdyxd ≠=== −∞
∞−

∞
−∞= ρρρ  

Generates the product topology onΖA [15]. Consequently, ),( σΖA is a topological dynamical system which is 

Devaney as well as Auslender-Yorke chaotic. Further,σ has chaotic and also has modified weakly chaotic dependence on 

initial conditions [16]. 

It is to be noted that if 12 −> mρ , then for any nρε /1= and Ζ∞
−∞= ∈= Aaa ii}{ , the cylinder 

),...,(, nnnn aaC −− , called a symmetric cylinder, is nothing but the open ball ),( ε
ρ

aBd which contains all the bi-infinite 

sequences having ],[ nna − as their central (2n+1)-block [17]. 

Shift spaces X, also called subshifts, are subsets of the full A-shift ΖA such that no block from a specific set F of 

some certain blocks appears in any sequence in X. Here the set F in this context is termed as the collection of forbidden 

blocks. The shift space with the forbidden collection F is generally denoted by XF. If the collection F of forbidden blocks 

of a shift space XF is finite, then it is a shift of finite type or a Markov shift. Markov shifts can be described by transition 

matrices or by associated directed graphs of these transition matrices. The connection between transition matrices and 

directed graphs is well known. These two concepts can be linked to Markov shifts. More precisely, a transition matrix or its 

associated directed graph give rise to a Markov shift which is known as a vertex shift corresponding to the transition 

matrix. The actual process of forming these Markov shifts is as follows: 

For a transition matrix mmijAA ×= )( , the vertex shift or Markov shift determined by A is denoted by AX̂  or AΣ  

and is defined by 

},1:)({
1

Ζ∈∀=∈==Σ
+

Ζ∞
−∞= iAAxx

iixxiiA  
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It is a 1-step Markov shift [5] with 
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2  numbers of forbidden 2-blocks given by the 

collection }0,,1:{ =≤≤= ijAmjiijF . Admissible cylinders in the Markov shift of the type 

),.....,(, lklk aaC −− with Ν∈lk,  satisfying ,1
1

=
+iiaaA lik ≤≤−∀ , and admissible symmetric cylinders of the type 

),.....,(, kkkk aaC −− play a pivotal role in the discourses of the dynamical properties of the topological Markov chain Aσ , 

restriction to the shift mapσ on the Markov shift AΣ . We have the following important proposition which is frequently 

taken into account in the studies related to topological Markov chains. 

Proposition: 2.2.1: If AAA Σ→Σ:σ is a topological Markov chain corresponding to the transition matrix A, 

then, 

(i) A is irreducible if and only if AAA Σ→Σ:σ is topologically transitive. 

(ii) If A is aperiodic, then AAA Σ→Σ:σ is topologically mixing. 

The Markov shift determined by the tridiagonal Toeplitz matrix )()1( sayTTm = is given 

by }1,},,....,3,2,1{:)({ˆ
1 ≤−Ζ∈=∈∈===Σ +

Ζ∞
−∞= iiiiiTT xximAxAxxX . Its forbidden class 

is }12,,1:{ −≤−≤≤≤= mjimjiijF . That is, a bi-infinite sequence miix Σ∈∞
−∞=)(  will be a member of TΣ , if 

1+ix follows ix only when their difference is 0 or 1.  

2.3: Topological Entropy 

Topological entropy of maps has been defined in various equivalent ways. Here, we will mainly deal with the 

definitions which are connected to the definitions of separated sets, spanning sets and to that of open covers. To deal with 

these entropies we need the concept of a very special type of metric f
nd for a topological dynamical system 

),( fX defined by 

))}(),(({max),(
0

yfxfdyxd nn

nk

f
n <≤

=  Where d  is the underlying metric for X.  

The open ball }0,))(),((:{}),(:{),( nkyfxfdXyyxdXyxB kkf
nd f

n
<≤∀<∈=<∈= εεε  with 

radius 0>ε  and centre x consists of all the points in X whose orbits up to time n stay −ε close to the orbit segment 

)}(),....,(),(),(,{ 32 xfxfxfxfxO nn
x = .  

It is easy to see that 

))),(((...))),((())),(((),(),( 11221 εεεεε xfBfxfBfxfBfxBxB n
d

n
dddd f

n
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2.3.1 Separated Sets and Topological Entropy 

Let ),( fX be a topological dynamical system with underlying metric d. For 0>ε  and Ν∈n , a set XS ⊆ is 

an −),( εn separated set if for every pair of distinct points Syx ∈, , we have that ε≥),( yxd f
n . That is, with a finite 

scale resolutionε , every pair of points in an −),( εn separated set have trajectories which can be recognized as different 

in time n. Since ),( dX is compact, so it follows that there exists −),( εn separated sets and every such set is finite and 

bounded above uniformly. ),,( εnfSep denotes the maximal cardinality of an −),( εn separated set. Now, for 

any 0>ε , the quantity ),,(log
1

suplim),( εε nfSep
n

fh
n

top
∞→

= gives the exponential growth rate of ),,( εnfSep . 

Then the topological entropy )( fhtop  of a given dynamical system ),( fX is defined 

by ),,(log
1

suplimlim)(
0

ε
ε

nfSep
n

fh
n

top
→∞→

= . Thus ),( εfhtop is the exponential growth rate of maximum number of 

orbits of length n which are distinguishable with finite precisionε and )( fhtop is the exponential growth rate of maximum 

number of orbits of length n which are distinguishable with finite but arbitrary precisionε . 

2.3.2: Spanning Sets and Topological Entropy 

For 0>ε  and Ν∈n , a set XS ⊆ is −),( εn spanning if for every Xx ∈ there is Sy ∈ such 

that ε<),( yxd f
n . It follows that a set XS ⊆ is −),( εn spanning if for the finite resolution 0>ε , any point in X can 

be approximated with a point in S whose orbit up to n unit of time is indistinguishable. Equivalently, XS ⊆ is 

−),( εn spanning if and only if ∪
Sy

d
yBX f

n
∈

= ),( ε . ),,( εnfSpan denotes the minimal cardinality of 

a −),( εn spanning set in X. Just like considering exponential growth rate of ),,( εnfSep for finite precision 0>ε and 

then taking limit as 0→ε , we can define topological entropy in an alternative way. Though it seems different, it turns out 

that the consequence of both of these concepts gives the same topological entropy. In this sense both are considered as 

equivalent definitions. The following theorem establishes this fact in a more accurate and precise way: 

Theorem: 2.3.1[8]: For a topological dynamical system XXf →: on the metric space (X, d),  

),,(log
1

suplimlim)(
0

ε
ε

nfSpan
n

fh
n

top
∞→→

=   

Proof: The proof of this theorem is based on the following two results 

(i) ),,(),,( εε nfSepnfSpan ≤  and (ii) ),,()2,,( εε nfSpannfSep ≤  

Let us prove these results one after another. Suppose S be an −),( εn separated set of maximal cardinality so 

that )(),,( SCardnfSep =ε . We claim that S is also a −),( εn spanning set. For given SXx −∈ , consider the 

set }{ xS ∪ . Now, S being a maximal −),( εn separated set }{ xS ∪ cannot be an −),( εn separated set. So, there must 
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exists a point Sy ∈ such that ε<),( yxd f
n . Otherwise, if ε≥),( yxd f

n for some Sy ∈ , then }{ xS ∪ will become an 

−),( εn separated set. Thus for any given SXx −∈ , there always exists a point Sy ∈  which is close−ε to x w. r. t. 

the metricdn −  as well as the metricd − . This amounts to conclude here that S is −),( εn spanning. Since the 

cardinality of any minimal −),( εn spanning set S cannot exceed the cardinality of any other −),( εn  spanning set, so we 

immediately have that  

),,()(),,( εε nfSepSCardnfSpan =≤   

To prove (ii), let us consider a minimal −),( εn spanning set S so that )(),,( SCardnfSpan =ε . Since, S 

is −),( εn spanning, so we have that ∪
Sy

d yBX
n

∈

= ),( ε . Again consider that Ŝ  be a maximal −)2,( εn separated set so 

that )2,,()
ˆ̂

( εnfSepSCard = . Now, we show that no balld f
n −  mentioned above can contain two distinct 

points Sts ˆ, ∈ . n separated set. If possible, let the two distinct points Sts ˆ, ∈  are contained in a single 

balld f
n − ),( εyB f

nd
for some Sy ∈ . Then, from triangular inequality, we have, 

εεε 2),(),(),( =+<+≤ tydysdtsd f
n

f
n

f
n ,a contradiction to our assumption that Ŝ is 

−)2,( εn separated. Then, it immediately follows that the cardinality of Ŝ  cannot be more than the number of open balls 

which is equal to the cardinality of S. So, we have, 

),,()()ˆ()2,,( εε nfSpanSCardSCardnfSep =≤=  

i.e, ),,()2,,( εε nfSpannfSep ≤  

Proof of the theorem: By the above two results (i) and (ii), we clearly have that  

),,(),,()2,,( εεε nfSepnfSpannfSep ≤≤  

Now, for any Ν∈n , we also have that  

)],,([
1

suplim)],,([
1

suplim)]2,,([
1

suplim εεε nfSep
n

nfSpan
n

nfSep
n nnn →∞→∞→∞

≤≤  

Taking limit as 0→ε , it amounts that the left as well as the right hand side of the above relation converge, by 

definition of )( fhtop  , to )( fhtop and hence ultimately we have that 

),,(log
1

suplimlim)(
0

ε
ε

nfSpan
n

fh
n

top
∞→→

=   

2.3.3: Topological Entropy via Covers 

Consider a topological dynamical system ),( fX on the compact metric space (X, d). Then, X being compact 
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every open cover of X is reducible to a finite sub cover. So, it is sufficient to consider only the finite covers of X. For given 

Ν∈n and 0>ε , we consider a particular class of open covers of X. Consider a class 

( ) })2/,(:2/,{ spanningnisSwhereSxxBC
ndn −∈= εεε . Thus for every spanningn −)2/,( ε set S, we 

have a finite collection like ε
nC  of open balls with centers at every point of the spanning set S and −f

nd diameter less than 

0>ε . By definition of a spanning set S, we have, XxB
Sx

dn
=

∈

)2/,( ε∪  and so sCn 'ε  are finite open covers of X  

with open sets having −f
nd diameter less than 0>ε . ),,( εnfCov denotes the cardinality of a minimal finite open 

cover of X  containing open sets each of which has −f
nd diameter less than 0>ε . Then we have the following 

important theorem which leads us to define topological entropy in another alternative way: 

Theorem: 2.3.1: For any topological dynamical system XXf →: on the metric space (X, d), 

),,(log
1

suplimlim)(
0

ε
ε

nfCov
n

fh
n

top
∞→→

=  

The proof of this theorem is an immediate consequence of the following Lemma: 

Lemma: 2.3.1: For any topological dynamical system XXf →: on the metric space (X, d), 

)2/,,(),,(),,( εεε nfSpannfCovnfSpan ≤≤  

Proof of the Lemma: To prove the first inequality, we first claim that if C is any cover of X containing open sets 

having −f
nd diameter less than 0>ε , then each open set U of this cover is contained in an open ball ( )ε,xB f

nd
centered 

at a point Ux ∈ . For, U being an open set with −f
nd diameter less than 0>ε and Ux ∈ , for every Uy ∈ , we have 

that ε<),( yxd f
n . So, it immediately follows that ),( εxBy f

nd
∈ and hence ),( εxBU f

nd
⊆ which is our claim. Then 

clearly },:),({ CUUxxB f
nd

∈∈ε  is an open cover of X with −f
nd balls having radius 0>ε  and 

cardinality )(CCard . Then the set S of all the centres of this new cover will definitely form an −),( εn spanning set of X 

with cardinality )()( CCardSCard = . Suppose we initially have chosen C to be a minimal open cover such 

that )(),,( CCardnfCov =ε . Then the corresponding −),( εn spanning set S of X obtained by the above process is 

such that )(),,( SCardnfCov =ε . In this case by definition of ),,( εnfSpan , we have that 

),,()(),,( εε nfCovSCardnfSpan =≤  (A) 

To prove the second inequality, let S be an −)2/,( εn spanning set of X. Then it gives a cover of open balls of X 

with −nd diameter less than 0>ε and with cardinality Card(S). If S is a minimal −)2/,( εn spanning set of X, then 

)()2/,,( SCardnfSpan =ε . Suppose C is the open cover ( ) }:2/,{ SxxBC
nd ∈= ε corresponding to this 

−)2/,( εn spanning set S of X, then the minimal cardinality cannot exceed the 
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cardinality )2/,,()( εnfSpanSCard = and so we have  

)2/,,(),,( εε nfSpannfCov ≤  (B) 

Combining (A) and (B), we get )2/,,(),,(),,( εεε nfSpannfCovnfSpan ≤≤ . 

Proof of the theorem: By the above Lemma, we have that  

)2/,,(),,(),,( εεε nfSpannfCovnfSpan ≤≤  

So, for each 0>ε ,  

)2/,,(log
1

suplim),,(log
1

suplim),,(log
1

suplim εεε nfSpan
n

nfCov
n

nfSpan
n nnn →∞→∞→∞

≤≤  

i.e. )2/,,(log
1

suplim),,(log
1

lim),,(log
1

suplim εεε nfSpan
n

nfCov
n

nfSpan
n nnn ∞→∞→∞→

≤≤  

For arbitrarily small precision 0>ε , taking limit as 0→ε , the left as well as the right hand limits tends to 

)( fhtop and hence by sandwich theorem we ultimately have that 

),,(log
1

suplimlim)(
0

ε
ε

nfCov
n

fh
n

top
∞→→

=  ■  

Example: 2. 3.1: Consider the well known doubling map Ζ→Ζ //: RRf  which is defined 

by )1(mod2)( xxf = . For Ν∈n and 4/10 << ε , we first construct −),( εn separated and spanning sets of X.  

For, 4/10 << ε , we can find a Ν∈k such that kk 2/12/1 1 <<+ ε . Here, from our assumption 4/10 << ε  we 

clearly have that 2≥k . Consider the set






 −≤≤= 120:

2
n

nn i
i

S , i.e. the set of all dyadic fractions with 

denominator n2 . We now show that 1−+knS is an −),( εn separated set.  

Let ,,, 1 yxSyx kn ≠∈ −+ be arbitrary. We know that for the doubling map )1(mod2)( xxf = , and for any 

Ζ∈ /, Rsr with 4/1),( <srd , ),(2))(),(( srdsfrfd = . So, if there exists 10 −<≤ nl  such that 

4/1))(),(( ≥yfxfd ll we are done. If 4/1))(),(( <yfxfd ll , then we repeatedly apply the rule 

),(2))(),(( srdsfrfd =  for −− )1(n times and ultimately will get  

),(2))(),(( 111 yxdyfxfd nnn −−− =  

Since ,,, 1 yxSyx kn ≠∈ −+  we have 12/1),( −+≥ knyxd and  

ε>=≥= −+−−−− kknnnnn yxdyfxfd 2/12/2),(2))(),(( 11111
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This shows that 1−+knS is an −),( εn separated set.  

Next we show that knS + is an −),( εn spanning set of X.  

Let )1,0[∈x be arbitrary. Then there exists a dyadic interval kn
knkni i

ii
I +

++ <≤




 += 20,
2

1
,

2
 such 

that iIx ∈ . Now, if we take
knkn

i
or

i
y ++

+=
2

1
2

, then we get,
kn

yxd +≤
2

1
),( and for 10 −<≤ nl ,  

ε<=≤≤⇒≤ ++−++ 11 2/12/22/2))(),((2/1),( kknnknlllkn yfxfdyxd  

Hence knS + is an −),( εn spanning set of X.  

Finally we compute the topological entropy of the doubling map using these −),( εn spanning set and 

−),( εn separated set.  

By definition of ),,( εnfSpan  and ),,( εnfSep , we have,  

)(),,( knSCardnfSpan +≤ε  and )(),,( 1−+≥ knSCardnfSep ε  

So, we have, 

2log2log
1

suplimlim)(log
1

suplimlim),,(log
1

suplimlim)(
000

==≤= +

∞→→+
∞→→∞→→

kn

n
kn

nn
top n

SCard
n

nfSpan
n

fh
εεε

ε A

nd  

2log2log
1

suplimlim)(log
1

suplimlim),,(log
1

suplimlim)( 1

0
1

00
==≥= −+

∞→→−+
∞→→∞→→

kn

n
kn

nn
top n

SCard
n

nfSep
n

fh
εεε

ε

Now, 2log)(2log)(,2log)( =⇒≥≤ fhfhfh toptoptop . ■ 

2.4: Topological Entropy of Shifts and of Markov Chains 

Entropy in a dynamical system measures the dynamical complexity of the mapping that defines the system. For a 

shift, it not only measures the complexity of the shift space, but also measures its information capacity. The entropy of a 

shift space is a number which is invariant under conjugacy and behaves well under factor codes and products. Perron- 

Frobenius theory of nonnegative matrices is a very useful tool applied to compute the entropies of irreducible shifts of 

finite type and of sofic shifts. In [14], we have methods for decomposing a general shift of finite type into irreducible 

pieces and for computing the entropy of those shifts with the help of these irreducible parts. Below we formally give the 

definition of entropy of a shift space prior to any further discussion on entropy of a shift of finite type. 

Definition : 2.4.1: Entropy of a shift: Let X be a shift space. The entropy of the shift space X is denoted by )(Xh  

and is defined by  

)(log
1

lim)( XB
n

Xh n
n→∞

=   
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Where )(XBn denotes the set of all the blocksn −  appearing in the points in X. From this definition it is clear 

that the entropy of a shift is nothing but the growth rate of blocksn −  in X. The calculation of entropy of a shift is 

important because it directly gives the topological entropy of its corresponding shift map. The following proposition gives 

the exact relation between these two entropies: 

Proposition [14, 17]: 2.4.1: For a shift dynamical system ),( XX σ , ).()( XtophXh σ=  

This proposition can be fruitfully applied to find the topological entropy of a Markov chain. For the calculation of entropy 

of a shift space, the following two theorems are extensively used. Precise proofs of these theorems are available in [14]. 

Theorem: 2.4.1[14]: [Perron-Frobenius Theorem]: For an irreducible matrix ,0≠A  A has a positive 

eigenvector Av with corresponding eigenvalue 0>Aλ that is both algebraically and geometrically simple. If µ is another 

eigenvalue for A, then .Aλµ ≤  Any positive eigenvector for A is a positive multiple of .Av  

T heorem: 2.4.2[14]: (i) If G is an irreducible graph, then h (XG) =log .)(GAλ  

(ii) If X be an irreducible M-step shift of finite type and G is the essential graph for which G
M XX =+ ]1[  , then 

h(X)=log .)(GAλ  

Now we are in a position to establish the following important results. 

III. DEVANEY CHAOS OF THE TRIDIAGONAL MARKOV SHIFTS  

Theorem: 3.1: BTm =)1( is irreducible as well as aperiodic. 

Proof: We first prove that 2B , is a band matrix of band width 5. For this we need to show that along with the central 3-

diagonals of 2B , the diagonals above and below these also contains non-zero entries. More explicitly we need to show that 

.2,1,0 ≤−≤≤∀≠ jiwithmjiBij   

Here BTm =)1(  being a tridiagonal Toeplitz matrix, by definition, we have, 

1,1,01 ≤−≤≤∀≠= jiwithmjiBij  and 0=ijB  otherwise. 

We have, miBBBBB iiii

m

j
jiijii ,.....,3,2,1,011.1.

1

2 =∀>==≥=∑
=

 

1,.....,3,2,1,011.1. )1(

1

1
)1(

2
)1( −=∀>==≥= +

−

=
++ ∑ miBBBBB iiii

m

j
ijijii  

1,.....,3,2,1,011.1. )1(

1

1
)1(

2
)1( −=∀>==≥= +

−

=
++ ∑ miBBBBB iiii

m

j
jijiii  
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2,.....,3,2,1,011.1. )2)(1()1(

2

1
)2(

2
)2( −=∀>==≥= +++

−

=
++ ∑ miBBBBB iiii

m

j
ijijii  

2,.....,3,2,1,011.1. )1()1)(2(

2

1
)2(

2
)2( −=∀>==≥= +++

−

=
++ ∑ miBBBBB iiii

m

j
jijiii   

Further, we have, 

32,...,2,1,0.... )(22)(11)(
1

)(
2

)( ≥−=∀=+++== +++
=

++ ∑ kandmiBBBBBBBBB mimkiikiiki

m

j
jijkiiki  

and 32,....,2,1,0.... )1()(22)(11
1

)(
2

)( ≥−=∀=+++== +++
=

++ ∑ kandmiBBBBBBBBB imimkiikii

m

j
kijijkii  

From the above facts it follows that 2B is a pentadiagonal matrix or a band matrix of band width 5. That is 2B  

will have two more non-zero diagonals thanB . In a similar way we can show that ,21, −≤≤ mkB k is a band matrix of 

band width 12 +k . Particularly, 1−mB is a positive matrix. Thus every tridiagonal Toeplitz matrix BTm =)1( is aperiodic 

and hence is irreducible. ■ 

Theorem: 3.2: The tridiagonal Markov chain BBB Σ→Σ:σ is topologically transitive and mixing. 

Proof: By proposition 2.2.1, we have that for a transition matrix A, BTm =)1( is topologically transitive if and 

only if A is irreducible. Since every entry in BTm =)1(  is either 0 or 1, so it is a transition matrix. Also, by the above 

theorem, BTm =)1(  is irreducible. Therefore, we immediately have that the corresponding topological Markov chain 

BBB Σ→Σ:σ is topologically transitive. 

Also, by the same proposition we have that if B is aperiodic, then the corresponding topological Markov chain 

BBB Σ→Σ:σ is topologically mixing. Since by the above theorem BTm =)1( is aperiodic, so BBB Σ→Σ:σ is 

topologically mixing. ■ 

Theorem: 3.3: The set of all the periodic points of BBB Σ→Σ:σ is dense in BΣ .  

Proof: Consider an arbitrary point Bnnii xxxxxxxxxxx Σ∈⋅== −−−−
∞

−∞= ..........................)( 3210123 . 

Then, for any given 0>ε , however small, we show that there is a periodic point )( BPp σ∈ such 

that ερ <),( pxd . That is, whatever small 0>ε may be, the −ε neighbourhood of x always contains a point of )( BP σ . 

For fixed 0>ε and 1>ρ , it is easy to find a positive integer Ν∈n such that ερ <−n . Now, for the 

point Biixx Σ∈= ∞
−∞=)( , we find out a periodic point )( BPp σ∈ in theε -neighbourhood of x. First we closely observe 

the point Biixx Σ∈= ∞
−∞=)( . We know that Biixx Σ∈= ∞

−∞=)(  when and only 
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when },...,3,2,1{,10 '
1 mxandiorxx s

iii ∈Ζ∈∀=− ± . That is, the difference between any two consecutive symbols 

in a point in BΣ is either 0 or 1. Now, consider the central −+ )12( n block ],[ nnx −  of the point Biixx Σ∈= ∞
−∞=)( and the 

letters nx− and nx . Then, there may arise two cases. Case I: Let nn xx =− . In this case we can construct the periodic 

point p by concatenating the fixed block ],[ nnx − infinite number of times in both directions. Since, nn xx =− it is always 

allowed. Also, since the central −+ )12( n blocks of x and p agree, so .),( ερρ <≤ −npxd  That is, in this case we can 

easily find out a point in the −ε neighbourhood of x.  

Case II: Let nn xx ≠− . Then there may arise two sub cases: nn xx >− or nn xx <− . 

If nn xx >− , then we consider the word nknn xaaaaxw −−= ...321],[  where nkn xaaaax −...321 is a word of 

consecutive digits in },...,3,2,1{ mA = . Then by concatenating the fixed word w infinite number of times in both 

directions we get a periodic point p in the −ε neighbourhood of x. 

If nn xx <− , then take the word nknn xbbbbxw −−=′ ...321],[ where nkn xbbbbx −...321 is a word of consecutive digits 

in },...,3,2,1{ mA = in descending order. In this case also by concatenating the fixed word 

nknn xbbbbxw −−=′ ...321],[ infinite number of times in both directions we get a periodic point p in the −ε neighbourhood 

of x. 

Thus in all cases we always have a periodic point )( BPp σ∈ in the −ε neighbourhood x. So, it follows that 

)( BP σ is dense in BΣ . ■ 

Theorem: 3.4: The shift map BBB Σ→Σ:σ has sensitive dependence on initial conditions with the sensitivity 

constant 1=δ .  

Proof: For arbitrarily chosen 0>ε and B
i
iixx Σ∈= ∞=

−∞=)( , we show that there always exists a point 

Biiyy Σ∈= ∞
−∞=)( in the ε -neighbourhood of x such that 11 ++ ≠ kk yx for some Ν∈k . Let )(xNε denotes the ε -

neighbourhood of x. Then, for fixed 12 −> mρ , there exists Ν∈n such that 
nn −− <≤ 1ρερ and so clearly we have 

that )(),(),(),....,(, xNxBxBxxC d
n

dnnnn εερ
ρρ

=⊆= −
−− . Now there may arise two cases: Case I: 1+= nn xx  and 

Case II: 1+≠ nn xx . 

In the first case we choose By Σ∈ in such a way that 

Ν∈≥∀=±=⋅== +++∞++−−∞
∞

−∞= )2(,,1)( **
1

*
],2[

*
1],0[]1,[ ixxxxwherexxxxyy ininnnnnnii  

Now, )(,,)( ],2[
*

],2[],0[]1,[ BnnnB
i
ii Bxxxxxx Σ∈=⇒Σ∈= ∞+∞+−−∞

∞=
−∞= , the language of BΣ   

Bnnnii xxxxyy Σ∈⋅==⇒ ∞++−−∞
∞

−∞=
*

],2[
*

1],0[]1,[)(  
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Here x and y agree at least in their )12( +n central blocks. So, clearly ερρ <≤ −nyxd ),(  and hence 

)(),(),....,(),( , xNxBxxCxBy dnnnn
n

d =⊆=∈ −−
− ερ

ρρ
.  

In the second case, we choose By Σ∈  in such a way that
*

],2[
*

1],0[]1,[)( ∞++−−∞
∞

−∞= ⋅== nnnii xxxxyy , where 

nn xx =+
*

1 and inin xx ++ =*
for 12 ≤− +nn xx and 1* ±= ++ inin xx  for 22 =− +nn xx , 2≥∀i . 

In both cases
*

],2[
*

1],0[]1,[
1

210
1 )(.....,............)( ∞++−−∞

+
++−

+ ⋅=⋅= nnn
n
Bnnn

n
B xxxxyxxxxx σσ , 1

*
1 ++ ≠ nn xx  

]))(())(([)()( 0
1

0
111 yxyx n

B
n
B

n
B

n
B

++++ ≠≠⇒ σσσσ ∵  

)(1))(),(( 11 δσσρ ==⇒ ++ yxd n
B

n
B  

Thus there exists )1(=δ such that for any Biixx Σ∈= ∞
−∞=)( and any neighbourhood )(xN of x, there exists 

)()( xNyy ii ∈= ∞
−∞=  and Ν∈+= )1( nk  with )(1))(),(( δσσρ ==yxd k

B
k
B . 

Hence BBB Σ→Σ:σ has sensitive dependence on initial conditions. ■ 

Theorem: 3.5: The tridiagonal Markov chain BBB Σ→Σ:σ  is Devaney chaotic. 

Proof: This is an immediate consequence of the theorems 3.2, 3.3 and 3.4. 

IV. TOPOLOGICAL ENTROPY OF TRIDIAGONAL MARKOV CHAIN S 

To calculate the topological entropy of a Markov shift that corresponds to a transition matrix requires the 

eigenvalue of greatest modulus of that matrix.  

By Proposition: 2.1.1, the eigenvalues of ),,( cbaTm are given by  

,
1

cos2 








+
−=

m

k
bcak

πλ mk ,....,3,2,1=   

So, immediately we have that the eigenvalues of )1()1,1,1( mm TT = are given by  

,
1

cos21 








+
−=

m

k
k

πλ mk ,....,3,2,1=   

Again by Proposition: 2.4.1, for a shift dynamical system ),( XX σ , ).()( XtophXh σ=  

Now, we calculate the topological entropy of BΣ where )1(mTB =  for 4,3=m and then finally generalize it. 
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4.2.1: Calculation of Topological Entropy for BΣ Where )1(3TB =  

Consider the matrix 

















==
110

111

011

)1(3TB   

Here )1(2)1(
10

11
1

11

11
)1(

110

111

011
3

3 λλ
λλ

λ
λ

λ
λ

λ
λ −−−=

−
−

−
−

−=
−

−
−

=− IB   

Now, 






−=+=⇒

=




−=−+=⇒

=−−−=−−−⇒=−

4
3

cos2121

3,2,1,
4

cos2121,21,1

0)12)(1(]2)1)[(1(0

max

22
3

πλ

πλ

λλλλλλ

k
k

IB

  

Therefore, by Perron-Frobenius theorem, 

( )]4/3cos21log[)21log(log)()( max πλσ −=+===Σ BtopB hh . 

4.2.2: Calculation of Topological Entropy for BΣ Where )1(4TB =  

Consider the matrix tridiagonal Toeplitz matrix 



















==

1100

1110

0111

0011

)1(4TB  

 

λλµµµ
λλλλ

λλλλ
λλλλλ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ

2,1

1)2()2(

1)1()12()1(

]1)1[()12)(1).(1(

110

110

011

1

110

111

011

)1(

1100

1110

0111

0011

22

222

222

22

4

−=−−=

−−−−=

+−−−−−=
−−−−−−−=

−
−⋅−

−
−

−
⋅−=

−
−

−
−

=−

where

IB

 

Now, 
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4,3,2,1,
5

cos21)15(
2

1
1

0)51(42
2

51
201 222

=






−=±±=⇒

=±−−⇒
±=−=⇒=−−

k
kπλ

λλλλµµµ
 

Therefore, ( ) ( ) 




−=




+=++=++=
5

4
cos21

5
cos2115

4

1
.2115

2

1
1max

ππλ  

and hence 












−===Σ
5

4
cos21loglog)()( max

πλσ BtopB hh . ■  

4.2.3: Topological Entropy for BΣ Where )1(mTB =  

Here 

mmmm

mT

××




























=





























=

1..0

1..

..11

111

111

111

011

1..00000

1............

0..11000

0..11100

0..01110

0..00111

0..00011

)1(  

We have already mentioned that the eigenvalues of )1(mTB =  are given by  

,
1

cos21 








+
−=

m

k
k

πλ mk ,....,3,2,1=  

We show that 






+
+=






+
−−=






+
−=

1
cos1

1
cos1

1
cos21max mmm

m ππππλ  

We have, ππππππ <
+

<<
+

<
+

<
+

<
+

<
1

......
1

4

1

3

1

2

1
0

m

m

mmmm
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




+
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

+
>






+
>






+
⇒

1
cos......

1

3
cos

1

2
cos

1
cos

m

m

mmm

ππππ
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




+
−<<






+
−<






+
−<






+
−⇒

1
cos21....

1

3
cos21

1

2
cos21

1
cos21

m

m

mmm

ππππ
 








+
+=






+
−−=






+
−=

1
cos1

1
cos1

1
cos21max mmm

m ππππλ  
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Hence we can conclude that 














+
+===Σ

1
cos21loglog)()( max m

hh BtopB

πλσ . ■  

V. CONCLUSIONS 

In this paper we have mainly introduced tridiagonal shifts corresponding to the tridiagonal Toeplitz transition 

matrices which normally arise in the study of steady heat flow problems in a plate and also in unsteady conduction of heat 

on a rod. Detailed discussion on shifts and on entropies has been given in the preliminary discussion section. In the result 

part, we have examined the dynamical aspects of the Markov chain on the tridiagonal Markov shift in the theorems 3.1 to 

3.5 where we have finally established that the tridiagonal Markov chain is Devaney chaotic. In section IV, we have 

calculated topological entropies for the Markov shifts with 3 and 4 letters and finally generalized it for m letters and found 

that the topological entropy is 3log
1

cos21log →














+
+

m

π
as ∞→m . The positivity of topological entropy 

ensures the chaotic nature of the tridiagonal Markov chains. It is rationalize to expect that steady heat flow problems and 

also the problems related to unsteady conduction of heat on a rod can be more analytically and fruitfully interpreted, 

studied and resolved with these added concepts and results. Further it is expected that new but more simplified results/ideas 

will definitely come up and thereby open new dimensions in the study of thermal physics.  
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